An Introduction to Machine Learning | The Complete Guide
Data Preprocessing for Machine Learning | Apply All the Steps in Python
Regression
Learn Simple Linear Regression in the Hard Way(with Python Code)
Multiple Linear Regression in Python (The Ultimate Guide)
Polynomial Regression in Two Minutes (with Python Code)
Support Vector Regression Made Easy(with Python Code)
Decision Tree Regression Made Easy (with Python Code)
Random Forest Regression in 4 Steps(with Python Code)
4 Best Metrics for Evaluating Regression Model Performance
Classification
A Beginners Guide to Logistic Regression(with Example Python Code)
K-Nearest Neighbor in 4 Steps(Code with Python & R)
Support Vector Machine(SVM) Made Easy with Python
Kernel SVM for Dummies(with Python Code)
Naive Bayes Classification Just in 3 Steps(with Python Code)
Decision Tree Classification for Dummies(with Python Code)
Random forest Classification
Evaluating Classification Model performance
A Simple Explanation of K-means Clustering in Python
Hierarchical Clustering
Association Rule Learning | Apriori
Eclat Intuition
Reinforcement Learning in Machine Learning
Upper Confidence Bound (UCB) Algorithm: Solving the Multi-Armed Bandit Problem
Thompson Sampling Intuition
Artificial Neural Networks
Natural Language Processing
Deep Learning
Principal Component Analysis
Linear Discriminant Analysis (LDA)
Kernel PCA
Model Selection & Boosting
K-fold Cross Validation in Python | Master this State of the Art Model Evaluation Technique
XGBoost
Convolution Neural Network
Dimensionality Reduction

Model Selection & Boosting | Machine Learning

Written by- Sharif Machine Learning Tutorials

Model Selection & Boosting: Model Selection is the undertaking of choosing a statistical model from an arrangement of candidate models, given information. In the least difficult cases, a prior arrangement of information is considered.


Boosting is a machine learning ensemble meta-algorithm for essentially lessening inclination, and furthermore changes in supervised learning, and a group of machine learning algorithms which change over weak learners to strong ones.


Types of Boosting Algorithms are:

1.    AdaBoost (Adaptive Boosting)

2.    Gradient Tree Boosting

3.    XGBoost





© aionlinecourse.com All rights reserved.